Uncertainty Propagation and Quantification in a Continuous Time Dynamical System
نویسنده
چکیده
Uncertainty propagation and quantification has gained considerable research attention during recent years. In this paper we consider uncertainty propagation and quantification in a continuous-time dynamical system governed by ordinary differential equations with uncertain/stochastic components. Specifically, we focus on the time evolution of probability density functions of the resulting stochastic processes, and discuss their applications in different fields with particular focus on population dynamics. In addition, we compare the difference in the stochastic processes resulting from differential equations with different types of random inputs, and discuss the connections among them.
منابع مشابه
Forward and Backward Uncertainty Quantification in Optimization
This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.
متن کاملFinite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay
In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...
متن کاملUncertainty Quantification for Stochastic Nonlinear Systems using Perron-Frobenius Operator and Karhunen-Loève Expansion
In this paper, a methodology for propagation of uncertainty in stochastic nonlinear dynamical systems is investigated. The process noise is approximated using KarhunenLoève (KL) expansion. Perron-Frobenius (PF) operator is used to predict the evolution of uncertainty. A multivariate Kolmogorov-Smirnov test is used to verify the proposed framework. The method is applied to predict uncertainty ev...
متن کاملThe Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کاملScalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems
Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012